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1. Introduction

This thesis describes an algorithm for automatic dense 3D reconstruction from

a calibrated video sequence. In contrast to the sparse reconstruction approach,

our goal is to utilize as much information from the input sequence as possible to

obtain a highly detailed 3D model of the scene. The output scene is represented in

an easily processable form of a triangle mesh. Since we are dealing with calibrated

video sequences, we assume that both the internal camera parameters (e.g., focal

lengths) and the external ones (camera positions and orientations) are known

for each frame of the sequence. Obtaining such calibration data from the video

sequence alone is highly non-trivial, however, it is a well researched problem both

in theory and practice [15]. A handful of packages solving this task are available

to the end user, both in the form of free (e.g., Bundler [1], PMVS2 [2], Blender

[3]) and proprietary software (e.g., Adobe After Effects [4], Maxon Cinema 4D

[5], Andersson Technologies SynthEyes [6]). The algorithm presented here can

hopefully provide a useful addition to this tool-chain, enabling significantly more

detailed 3D reconstructions.

The main expected application of this work is for visual effects in movies. A

detailed geometrical representation of a scene enables us to realistically incorpo-

rate computer generated objects into the video, modify lighting of the scene as

well as mask out unwanted features.

Dense reconstruction can also be used as a quick and inexpensive 3D scanner

for objects of arbitrary scale. After some postprocessing, the resulting scene can

be sent to a 3D printer to obtain a scale model. Alternatively, the acquired data

can be archived for later visualization, which is desirable, e.g., for documenting

historical artifacts.

Further applications can lie in the field of intelligent robotics. Here, a scene

reconstruction is necessary for autonomous navigation of a vehicle. It may even

be the case that the robot (typically an aerial vehicle) is used for terrain mapping,

leading to further qualitative requirements on the reconstruction.

Modern videogames also increasingly apply some form of scene reconstruction

for user input. Typically, only simple algorithms are used in this setting because

of its real-time nature. However, current research shows that even high quality

dense reconstruction algorithms can be optimized to provide such performance.

Our algorithm is designed for mostly static scenes consisting of smooth sur-

faces with static lighting and negligible amount of reflections. Of course if the

input sequence is a part of a movie, it is reasonable to expect moving objects,

such as actors. Nevertheless, we do not account for these explicitly and hope the

artifacts resulting from large-scale motion will be discarded during the outlier

filtering phases of the reconstruction.
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1.1 Overview of our method

The key idea of our approach is to use the current estimate of the scene to predict

individual frames of the video. Comparing these predictions to the actual frames

of the sequence allows us to update the estimate of the reconstructed scene.

By repeating this process, we iteratively and adaptively refine the estimate of

the scene until the reconstructed scene has a sufficient amount of detail. Both

internal and external camera calibration must be known in advance; we do not

try to compensate for their errors in any way.

To start, the algorithm needs an initial estimate of the scene. This is usually

generated as a side product of camera calibration in the form of a set of points

that lie on the real scene’s surface. For more information about sparse scene

reconstruction, please refer to Appendix B. This point cloud is converted to a

mesh surface approximating the real scene.

A randomized heuristic then chooses several frames of the video based on the

viewpoints they were acquired from, independently of their temporal position in

the sequence. One of these viewpoints is labeled as the main camera, others are

side cameras.

Sequentially, the frame of each of the side cameras is projected onto the scene’s

surface and then rendered from the main camera. This is the predicted frame cor-

responding to the side camera. If our scene estimate was perfect, this prediction

should be equal to the main camera’s frame (except for occlusions).

This process is illustrated in Figure 1.1. The first image is a frame of the

sequence corresponding to a side camera. Figure 1.1b shows an overall view

of the scene estimate with this image projected. Figure 1.1c shows the view

of the scene as seen from the main camera; this view is the predicted frame

corresponding to the side camera considered. It is roughly similar to the actual

frame corresponding to the main camera (Fig. 1.1d).

We then calculate dense optical flow between the main camera’s image and

each of the predicted frames. This flow reflects deficiencies in the current scene

estimate with zero flow indicating the surface is correct. Using all the optical

flow fields at once, we calculate the deformation of the scene surface that would

minimize these optical flows. This updated surface is produced as a point cloud,

allowing us to handle discontinuities and outliers effortlessly. Each pixel of the

collection of optical flow fields gives rise to one point in the point cloud.

The process of choosing a main camera along with a bundle of side cameras is

repeated to densely cover the scene. Then, the resulting point cloud is filtered to

remove outliers and to reduce redundancy. It is again converted to a mesh surface

to provide a new scene estimate. Finally, a heuristic determines if the amount of

detail is sufficient and if not, we repeat the whole scene updating process.
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(a) Side camera frame (b) Scene estimate

(c) Projection from the main camera (d) Main camera frame

Figure 1.1: Example of reprojection on a manually created model of the district
Prosecuting Attorney’s Office, Prague.

1.2 Related work

Structure from motion seems to have become a very fashionable topic over the

last few years. There are many scientific papers and software packages that solve

various tasks related to scene reconstruction, and the amount is still rapidly

increasing.

This work uses an approach similar to an independent work by Newcombe

and Davison [13] from 2010. However, their framework is optimized for real-time

reconstructions. It processes data streaming from the camera, calibrating its pose

and reconstructing a sparse point cloud on the fly. Their framework works with

mesh data directly, creating a new rectangle-like patch from the camera’s view

when its viewport significantly changes. The iteration scheme to refine previ-

ously estimated geometry is used there as well, but only within the single patch

being processed. To polygonize the point cloud (sparse or dense), they choose a

technique based on compactly supported radial basis functions, for the reasons of

computational efficiency. In areas where the newly created patch closely overlaps

with previous data, the patch is simply filtered out.

Another dense reconstruction algorithm based on mesh data was proposed by

Martin Bujňák [16]. It is designed for offline processing of uncalibrated video
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sequences. The camera selection stage is not mentioned in much detail in the

work; presumably the cameras are selected based on their position in the se-

quence. For merging meshes obtained from different views, the author proposes

a sophisticated scheme motivated by practical scenarios.

Representing the data as mesh structure is very efficient for visualization.

Unfortunately, it causes difficulties when dealing with discontinuities in the depth

map.

A distributed algorithm based on volumetric information was proposed by

Wendel et al. [33]. They use an aerial drone with a mounted camera and enough

computational power to estimate its pose using sparse reconstruction techniques.

The drone selects interesting frames out of its real-time sequence, based on the

positions they were obtained from, and transmits these to a static computer,

along with their calibration data. The server calculates depth information of the

viewed geometry and inserts these values into a volumetric structure in the form

of the signed distance function.1 This volumetric data is directly visualized by

raycasting.

Newcombe, Davison and Lovegrove presented [14] an algorithm based on volu-

metric representation, too. They managed to omit the sparse tracking phase and

use dense volumetric data directly for camera pose estimation. The frames used

are always successive in the sequence, as the approach relies on high precision

calculations from images with small parallax.

Volumetric representation is very flexible and rather straightforward to pro-

cess. Conversion of voxel data to mesh is not difficult; an algorithm solving this

task is described in Section 2.1.3. The drawback of volumetric representation is,

in most implementations, that the bounding volume must be a priori known.

An offline algorithm producing a point cloud only was proposed by Parsonage

et al. [30]. They start by calibrating cameras for the whole sequence, obtaining

a sparse point cloud as a side product, and then calculate and combine dense

point clouds obtained from different views. Of interest is their camera selection

algorithm. It considers both the temporal and spatial positions of the cameras,

and their view of the point cloud currently known. Furthermore, the camera set

is checked during the reconstruction to see whether its data corresponds to the

current estimate; otherwise, the set is discarded.

1.3 Available software

Perhaps the best known software for sparse scene reconstruction is Bundler [1]

written by Noah Snavely. Its principle of operation is described in a paper [31]

1The signed distance function has positive values outside of an object and negative inside of
it; absolute value of the function is the distance from the nearest point on the object surface.
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by the same author. In a related project called Photo Tourism [32], the geomet-

ric representation of entire cities was automatically reconstructed using photos

collected from the Web. It gave rise to a proprietary package called PhotoSynth

[10] by Microsoft.

A graphical interface for Bundler and related packages, called PMVS2, has

been developed by Yasutaka Furukawa and Jean Ponce [2]. It is rather difficult

to install and use, but it can solve most tasks related to structure from motion.

A C++ library for sparse reconstruction and a few related tasks was written

by Keir Mierle under the name libmv [11] as his dissertation. Its main application

is in the 3D package Blender [3], where it has been incorporated into the workflow.

Apart from these, there are many more structure from motion packages. Main-

ly, there are many commercial software solutions available, which are not listed in

this section. Many universities have been developing their own implementations

of structure from motion algorithms; however, few of these are comfortable to

use. There are even more such programs being developed by individuals (such

as the program accompanying this thesis), many of which rely on the OpenCV

library [7] for their computations.

1.4 Organization

Chapter 2 gives a detailed description of widely known algorithms we utilized as

components of our method. These are grouped by the task for which they are

used in our program, and the tasks are ordered chronologically by their presence

in our workflow. The next chapter describes novel algorithms applied in this

work. Many aspects of their design are rather a matter of choice, so we concen-

trate on the motivation behind these. Chapter 4 describes the implementational

aspects of our program in detail. It also provides a more detailed description of

the overall method, as it has been outlined in Section 1.1. The last chapter eval-

uates the algorithm on both standard testing sequences and real world samples,

and comments on its strengths and weaknesses. In that chapter we also discuss

appropriate choices of parameters for these scenarios.

The directory structure of the accompanying data medium is explained in

Attachment C.

1.5 Notation

We mostly follow the notation used in the classical book Multiple View Geometry

[22]. Boldface letters (e.g., x) denote real column vectors. Monospace letters (e.g.,

C) denote real matrices. An upper index next to these (e.g., Ci) identifies a matrix

in an ordered set of matrices, n-th power of matrix would be always expressed
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using parentheses, e.g., (S)n. The central dot · can mean either scalar or matrix

multiplication.

We often use the central circle ◦ to avoid multiple parentheses, in the meaning

f ◦ g(x) = f
(
g(x)

)
. We use a nonstandard upper index + of certain functions

which means their parameter is added to their actual value: f+(x) = x+ f(x).

Classical norm braces | · | denote the Euclidean norm of vectors (or the mag-

nitude of a set). Doubled version of these, ‖ · ‖, denotes various other norms and

norm-like mappings and is further clarified where used.

1.6 Basic notions

Grayscale image is a function Ω → R, where Ω ⊂ R2 is a rectangular image

domain. Unless stated otherwise, we assume Ω = [−1, 1]2.

The real world is considered to be R3; however, we often use homogeneous

coordinates P3, expressing 3D vector (x, y, z)T as (xw, yw, zw,w)T for an arbi-

trary w 6= 0. Using this ambiguous notation, projective mappings in R3 can be

expressed as linear ones.

Camera projection is a non-singular 4× 4 matrix. Multiplication by it trans-

forms points from scene space to camera space, both being P3. Note the contrast

to the definition more common in literature, by which the camera would have

only three rows. The extra row of our camera can be viewed as obtaining a depth

map value for each projected pixel. The visible part of camera space (usually

referred to as the clip space) is considered to be a box of homogeneous vectors

corresponding to (x, y, z)T ∈ [−1, 1]3 (i.e., in the OpenGL convention). With in-

creasing distance of points from the camera center in scene space, the projected

camera-space depth z increases (nonlinearly); points with z = −1 and z = 1 are

said to lie on the near clipping and far clipping planes, respectively. A function

π to transform visible camera-space points further to image space Ω is defined

when first needed, in Section 2.3.

Although the entire video sequence was necessarily acquired by a single moving

camera, we use the intuition that there is a static camera corresponding to each

frame, with all these cameras viewing the scene simultaneously.
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2. Algorithms

The approach presented here utilizes many algorithms from different areas. In

this chapter, we describe these algorithms in their general setting. Details about

their specific use in our program are presented in Chapter 4.

2.1 Polygonization of the point cloud

2.1.1 Alpha shapes

Alpha shapes were introduced by Edelsbrunner, Kirkpatrick and Seidel [18] in

1983. An algorithm solving the alpha shape problem connects vertices of a 3D

point cloud into triangle faces in a way that respects, in a certain sense, its overall

shape. The input and output of the problem (for a general dimension d ∈ N) has

the following general form:

Name: the alpha shape problem.

Input: a set X of n points from Rd, a radius α ∈ R+
0 .

Output: a set of (d − 1)-dimensional simplicies (e.g., a set of

triangle faces for d = 3), whose vertices are from X.

We are mainly interested in the case d = 3. A triangle is included in the output

if and only if its vertices are touched by a sphere of radius α whose interior does

not contain any points of X. As α approaches infinity, the output degenerates to

a convex hull of the input point cloud.1 Conversely, if the parameter approaches

zero, the output will be empty. A good choice of the radius parameter is very

important in order to get useful results but — as we will see — the algorithm

can be adapted to make a guess for a suitable α on its own.

It helps to start by calculating a more complex structure: the Delaunay tes-

sellation,2 which can be later easily turned into any specific α-shape.

Definition 1. Delaunay tessellation of a set of points from Rd is a set of d-

dimensional simplices whose vertices are a subset of the input and whose circum-

scribing spheres do not contain any other points from the input.

A Delaunay tessellation of a set of 72 points in R2 is shown in Figure 2.1a.

The α-shape for a manually chosen α is marked as a thick outline. Figures 2.1b

1Sometimes, the radius is set to 1
α , which allows alpha shapes to generalize the convex hull.

Furthermore, the range of permitted values of α can be extended to negative values.
2Commonly, it is referred to as the Delaunay triangulation, even when generalized to d > 2.

We prefer the term tessellation because triangulation is used in a completely different meaning
throughout this text.
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®

(a) Delaunay tessellation
and alpha shape in 2D

(b) Alpha shape in 3D,
α = 1

(c) Alpha shape in 3D,
α = 0.4

Figure 2.1: Illustration of alpha shapes for various input.

and 2.1c show α-shapes of the Stanford bunny 3D scanned data (1000 points) for

two different values of α.

Many algorithms for calculating the Delaunay tessellation are used in practice.

When the dimensionality of the problem is at least three, it appears to be prac-

tically feasible to use the following incremental approach. Delaunay tessellation

of d+ 1 points is the simplex itself. Adding a new point to an existing Delaunay

tessellation consists of finding its nearest neighbor in the current structure, deter-

mining the affected area around it and appropriately altering the corresponding

simplices. All these three tasks can be carried out in linear expected time [27].

The resulting structure contains at most O(ndd/2e) simplices [29, p. 115–119], so

in the case of d = 3, the output size of this algorithm matches the expected time

complexity. Practical measurements performed on a set of points generated uni-

formly at random indicate that the performance tends to be even better, close to

a linear dependency [27].

Conversion of a 3D Delaunay tessellation to an alpha shape is straightforward.

Every simplex (tetrahedron) si of the Delaunay tessellation has a circumscribed

sphere of radius αmax(si). Similarly, every triangle face fi of the tessellation has

a circumradius denoted by αmin(fi). A face fi is a member of the output for a

given α if and only if αmin(fi) ≤ α ≤ αmax(si) for si ∈ {neighbor simplices of fi}.
Note that most faces have two neighbor simplices; those with a single neighbor

form the convex hull of the point set.

We observe that as α changes, the resulting α-shape changes only at finitely

many thresholds, namely the circumradii of all faces and simplices of the tessella-

tion. Clearly, as α decreases, the number of disconnected components (including

all disconnected vertices) monotonically increases. Thus, we can pick a desired

number of disconnected components and use bisection to search for the smallest

α possible. We generally wish to keep α as low as possible, because such α-shape

retains most details of the original point cloud. On the other hand, we cannot

13



allow it to decrease too much, since the α-shape would then degenerate to an

empty set. To prevent that, we force the output to make a single component; but

as discussed later in section 4.1, that is a questionable constraint.

2.1.2 Poisson volume reconstruction

A powerful numerical approach to volumetric data reconstruction from surface

samples based on solving the Poisson equation has been proposed by Michael

Kazhdan et al. [24]. The resulting volumetric representation has higher values

inside of the estimated model than outside. Therefore, the surface of the model

can be extracted as its isosurface.

Name: the volume reconstruction problem.

Input: a set of points {pi} ⊂ R3 on the surface of the model

and the corresponding normals {ni}.
Output: estimated characteristic function χ̂ of the model sampled

in a regular grid.

The approach is targeted at scenes with a meaningful volumetric represen-

tation, i.e., compact solid objects. We begin by introducing the characteristic

function:

Definition 2. The characteristic function χ : R3 → {0, 1} of a solid object has

value 1 for points inside of the object and 0 outside.

The main idea of the algorithm is that if the input data would be exact, then

after applying subtle smoothing to the characteristic function χ its gradient at

each point pi would have the same direction as the corresponding inward normal

−ni. The function χ itself cannot be used since it is not differentiable and thus

the gradient is not always properly defined. To overcome this, the function is

convolved with a blurring kernel F , obtaining a smooth function χ̂ = F ∗ χ.

Furthermore, we can define a continuous vector function V : R3 → R3 based on

the input samples that satisfies V (pi) = −ni. We get the following equation:

∇χ̂ = V. (2.1)

This equation does not necessarily have a solution ∇χ̂ for a general V . Therefore,

we seek a solution in the least-squares sense. The vector function V is defined at

the end of this section.

Analytically, the sought function χ̂ minimizes the following:

E =

∫
R3

|∇χ̂(x)− V (x)|2dx. (2.2)
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As a necessary condition for attaining the minimum value, χ̂ must satisfy the

Euler-Lagrange equation on its whole domain. In order to apply this formalism,

the functional L to be minimized is formulated as

L
(
x, χ̂(x),∇χ̂(x)

)
:= |∇χ̂(x)− V (x)|2. (2.3)

The parameter χ̂(x) is just a technicality, it is not used in L.

Then, using the notation x = (x, y, z)T and ∇χ̂(x) = (f, g, h)T, the Euler-

Lagrange equation is of the form

∂L

∂χ̂(x)
− d

dx

∂L

∂f
− d

dy

∂L

∂g
− d

dz

∂L

∂h
= 0. (2.4)

Simplifying and using the fact χ̂(x) does not occur in L, we obtain

0− div(L) = div(∇χ̂)− div(V ) = ∆χ̂− div(V ) = 0. (2.5)

An intuitive explanation is that we equate the curl-free parts of the vector fields

from (2.1). This is reasonable since the gradient of any function is always curl-

free. The result is known as the Poisson equation and typically formulated as

∆f = g for an unknown function f ∈ Rn. Solving problems of this kind has a

wide variety of scientific applications, many of them in computer graphics.

To tackle the problem numerically, we need to design a suitable finite basis

and express the function div(V ) (corresponding to the input data) as a vector in

the resulting vector space. The solution χ̂ will be another such vector.

The basis proposed by the authors is a hierarchical structure of functions

resembling wavelets. Each of the basis functions Fi is a transposed and scaled B-

spline of order 3, i.e., 3rd convolution of the three-dimensional box function with

itself. The hierarchy is given by an octree:3 for each of its nodes the basis contains

a function centered at the center of the corresponding cell, scaled according to

the width of the cell and normalized to have a unit integral. The octree spans

the whole input point cloud and its depth is chosen so that each input point pi

is contained in its own leaf node. Empty nodes are omitted where possible and

therefore the size of the structure stays roughly proportional to the amount of

detail of the sampled surface.

The vector function V is defined in its continuous form — but anyway using

the octree structure. Its value at any point in space is a weighted average of the

sampled normals in the corresponding cell and its neighborhood. The weights

correspond to trilinear interpolation among the cells. In cases when the samples

are not evenly distributed, a further weighting factor inversely proportional to the

3An octree is a tree of cubic cells, where each of its inner nodes is equally subdivided among
its eight children.

15



number of points in the neighborhood is introduced to obtain accurate results.

And finally, weight of each point may be part of the input, if the precision they

were obtained with substantially varies for each point.

Expressing the functions div(V ) and ∆χ̂ in the basis of functions Fi, this

problem becomes a discrete one. The authors suggest to discretize both functions

by projection onto the basis, remarking that it is just an approximation, since

the basis is not orthogonal. The former, div(V ), becomes a constant vector v,

whereas the latter can be expressed as Ax for a constant matrix A, due to the

linearity of the Laplacian ∆. Vector x corresponds to the sought function χ̂. The

linear system Ax = v is solved using a multigrid iterative approach to leverage

the hierarchical structure of the data and sparsity of A.

2.1.3 Marching cubes

An algorithm for finding the isosurface of voxel data was proposed by Lorensen

and Cline [28] in 1987. Here, we describe its regular variant but it can be extended

to process grids with spatially varying resolution. The result of the Poisson

reconstruction of Section 2.1.2 can be easily used as the input of this algorithm.

Name: the isosurface extraction problem.

Input: object density function χ̂ sampled at a regular grid;

thresholding value t.

Output: triangle mesh representing the isosurface χ̂ = t.

A good choice of the threshold t is a (possibly weighted) average of χ̂ at

the sampled surface points used previously for volumetric reconstruction. The

amount of detail of the resulting polygonal approximation depends on the density

of the grid.

The algorithm processes each cube of the sampling grid separately. If the

value of χ̂ is above the threshold t at several vertices of a cube and below it at

others, a patch of mesh surface is inserted inside the cube. Positions of vertices

of the patch are given by linear interpolation of χ̂ along edges of the cube (i.e.,

line segments of the sampling grid). The edges and faces of the surface patch are

defined for each possible configuration by a lookup table. This table is designed

so that two patches in neighboring cubes always have identical intersections with

their common face — ensuring that the resulting surface is a 2-manifold (except

for boundaries, possibly).
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2.2 Dense optical flow

We assume the scene being reconstructed is Lambertian, meaning that the color of

each visible scene point does not depend on the direction it is viewed from. If the

viewpoints of the two video frames being compared are close to each other, we can

ignore occlusions and assume that each pixel of the first image has its modified

position in the second image with the same color. The difference in position leads

to a 2-dimensional vector field for the whole image. This displacement field is

called the dense optical flow, or optical flow for short. We would like to estimate

it to obtain information about the scene geometry. To simplify the problem, we

consider only grayscale images.

Name: the dense optical flow problem.

Input: two grayscale images I, P : Ω→ R
Output: displacement field flow(x) such that I(x) = P (x +

flow(x))

In this section, we consider the rectangular image domain Ω has actual pixel

dimensions of the images. It helps to simplify the notation.

2.2.1 Linear approximation

An optical flow algorithm based on local linear approximation of the image was

presented by Horn and Schunck in 1981 [23], and further developed by many

researchers. It is similar to the simple version of the popular sparse motion

tracker proposed by Kanade, Lucas and Tomasi in the same year [25].

The algorithm iteratively minimizes the energy functional

E(flow) = ‖I − P ◦ flow+‖+ ‖(∇flow1,∇flow2)T‖ (2.6)

for the abbreviation flow+(x) = x + flow(x), and flowi being the components

of the vector field. This energy can be well understood under the (nowadays

classical) data term + smoothness term paradigm.

The mapping ‖ · ‖ does not have to be a true norm and a different one can be

applied for each of the two terms. Typically, we let them differ by a multiplicative

constant, leaving a free parameter for weighting between smoothness and data

term accuracy. Here, we consider ‖f‖ =
∫

Ω
Ψ(f(x)2)dx for an increasing smooth

function Ψ. For the smoothness term, we sum squares of the matrix elements:

‖f‖ =
∫

Ω
Ψ
(∑

i,j fi,j(x)2
)
dx. Typical choices of Ψ are discussed at the end of

this section.
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We assume that both images are locally well approximable by a linear function.

Furthermore we assume flow to be smooth, implying that the gradients ∇I and

∇P of the images should be similar. We let G denote their average:

G = 1/2 (∇I +∇P ) . (2.7)

Together, this leads us to the approximation

P
(
x + flow(x)

)
≈ P (x) +G · flow(x). (2.8)

The energy functional E then becomes

E(flow) =

∫
Ω

ΨD

((
I(x)− P (x)−G · flow(x)

)2
)

+

ΨS

(
|∇flow1(x)|2 + |∇flow2(x)|2

)
dx =:

∫
Ω

L
(
x, flow(x), Jflow(x)

)
dx, (2.9)

where Jflow = (∇flow1,∇flow2)T is the Jacobian matrix.

In order for flow to minimize E, the integrand Lmust satisfy the 2-dimensional

form of Euler-Lagrange equations. To state these, we have to expand the vectors

into variables as x = (x, y)T, flow(x) = (u, v)T and G(x) = (g, h)T. Further, we

define a shorthand t = P (x) − I(x). Using this notation, the integrand L reads

as

L(. . .) = ΨD

(
u2g2+v2h2+t2+2ugvh+2t(ug+vh)

)
+ΨS

(∂u
∂x

2

+
∂v

∂x

2

+
∂u

∂y

2

+
∂v

∂y

2)
,

(2.10)

where all the partial derivatives of u and v are considered to be its parameters.

The Euler-Lagrange equation for the coordinate x is of the form

Ψ′D(. . .) · (2ug2 + 2gvh+ 2tg)−Ψ′S(. . .) · d

dx

(
2
∂u

∂x

)
−Ψ′S(. . .) · d

dy

(
2
∂u

∂y

)
= 0,

(2.11)

where Ψ′D(. . .) and Ψ′S(. . .) are derivatives of the functions at the original values

of their respective arguments.

The equation can be modified to a simpler form, and a similar equation is

obtained for the coordinate y:

Ψ′D(. . .)g(ug + vh+ t)−Ψ′S(. . .)∆u = 0

Ψ′D(. . .)h(ug + vh+ t)−Ψ′S(. . .)∆v = 0. (2.12)

These two equations shall be satisfied by flow in every pixel of the image.

Because of the derivatives Ψ′D and Ψ′S, they might be nonlinear in u, v. To

overcome this problem, we locally approximate these as constants. Then, we
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discretize the gradient of the image and the Laplacian of the optical flow by

central finite differences to obtain a sparse linear system. If a value outside of

image domain is necessary, we use the nearest pixel. This system can be efficiently

solved by an iterative scheme, updating Ψ′D(. . .) and Ψ′S(. . .) to their current value

after each iteration.

However, the optical flow is usually too large and the linear approximation of

the images is not sufficient. We can extend the scheme to make use of an estimated

flow field flowold, and refine it by a new field flownew. This requires calculating an

optical flow between the first image I and a warped version of the second image

P ◦flow+
old. The overall result of the computation is then flow = flowold ◦flow+

new.4

The data term stays intact but the argument of ΨS must be calculated from

flowold ◦ flow+
new to impose smoothness of the overall result.

This method of calculating a refined flow from an estimate is usually referred

to as warping. The algorithm can be made to handle large flow fields if this

estimate is obtained from downsampled versions of the input images — thanks

to the fact that the magnitude of the flow field decreases with decreasing image

size.

The resulting algorithm starts by downsampling both the images by a certain

factor, typically 2, and calling itself recursively (unless the images are below a

certain size limit, to stop the recursion). It upsamples the flow field obtained from

the recursive call and multiplies it by the same scaling factor. Then, it refines this

field by solving the system as described and by applying warping several times

on the full-scale images. It outputs the resulting optical flow.

The functions Ψ can be set to a multiple of the identity function, in which case

Ψ′(. . .) is actually a constant. However, it penalizes discontinuities in the flow

field too strongly, as they can be actually present in the reality. One of possible

ways around this is to use the Huber function: Ψ(x) = x/2 for x < ε2,Ψ(x) =

ε(
√
x− ε/2) otherwise. This Ψ and its derivative are continuous on R+

0 .

A more detailed derivation of the algorithm presented here is given by Brox

et al. [19].

2.2.2 Quadratic polynomial expansion

A method of optical flow calculation based on local polynomial expansion was

introduced and researched by Gunnar Farnebäck [20]. Each pixel of both images

is assigned a quadratic polynomial which best-fits its neighborhood in that image.

Such model obviously provides more information than the linear approximation

of Section 2.2.1. Due to this, a more sophisticated model can be used to locally

4By the assumption of flowold being locally well approximable as a constant, the result can
be simplified as flow = flowold + flownew.
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approximate the optical flow as well. This in turn makes the resulting flow robust

under a wider range of transformations, e.g., rotation.

Definition 3. The (quadratic) polynomial expansion of image I around a pixel

xi is a polynomial fi(x) = xTAix + xTbi + ci that makes a least-squares fit to

a chosen neighborhood of the pixel. Namely, the parameters Ai,bi, ci minimize∑
xw(x− xi) |fi(x)− I(x)|2 for a windowing function w.

The algorithm starts by calculating the quadratic polynomial expansion for

each pixel, producing {fi} and {f ′i} for I and P , respectively. That can be done

efficiently using a coarse-to-fine scheme; the technique is described in more detail

in [21].

The key idea of the algorithm is to assume that each pixel’s polynomial is

transformed by a translation on its own. We denote this translation as di, so

that fi(x
i) = f ′i(x

i + di) should hold for each pixel xi. Equating the quadratic

coefficients of these polynomials results in Ai = A′i. This equation will usually

not be satisfied, but leads us to an approximation Â = (A+ A′)/2. Equating their

linear coefficients results in bi = b′i + 2diÂi, which can be used to solve for di.

Instead of using this equation directly, a broader neighborhood of xi is con-

sidered again and a local motion model si(x) is fitted to it. For a pixel xk in the

neighborhood it should hold that bk = b′k + 2si(x
k)Âk. We make a least squares

fit for si, so formally minimize∑
k

w(xk − xi)
∣∣2si(xk)Âk + b′k − bk

∣∣2 . (2.13)

The windowing function w may be chosen differently than in the Definition 3 –

typically it is much wider. Such a choice allows to use quite complex local model

si:

si(x) = S(x)pi,

where

S(x) = S

(
x

y

)
=

(
1 x y 0 0 0 x2 xy

0 0 0 1 x y xy y2

)
and pi ∈ R8 is a vector of the sought distortion parameters for each pixel. Plug-

ging this into (2.13) produces a formula linear in pi, i.e., one linear least-squares

system per image pixel.

To finish, we set flow(xi) ← si(x
i). And as before, this whole algorithm is

called recursively in a warping scheme over different scale levels, and iterated

several times on each level to get a more accurate result. To speed up the calcu-

lation, warping during iterations on the same level is done by directly sampling

the corresponding polynomial f ′j from j ∼ bxi + flow(xi)c.
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2.3 Point triangulation

When observing a point from two cameras whose external and internal calibra-

tions are known, it is possible to calculate the 3D position of the point in scene

from the image-space positions of the two projections (assuming the positions of

the two cameras differ non-trivially). In this section, we describe the method em-

ployed to perform this under the assumption that the coordinates of the point’s

projection from one camera (the ‘main’ one) are known accurately and the pro-

jections from all the other (‘side’) cameras are corrupted by normally distributed

(Gaussian) noise.

Name: the point triangulation problem.

Input: main camera Cmain and image-plane coordinates (x, y)T;

several side cameras {Ci}, estimates {si} ⊂ R2 of the

projection of the unknown 3D point, and the corre-

sponding covariance matrices {Σi}.
Output: maximum likelihood estimate p ∈ R3 constrained along

the back-projection ray from the main camera; the re-

sulting probability.

In this and some of the following sections, we will need to formalize the con-

version from homogeneous to the Cartesian coordinates:

Definition 4. The projective division function π : P3 → R2 maps a homogeneous

4-vector to its Cartesian counterpart and discards its depth information. That is,

π((x, y, z, w)T) = 1
w

(x, y)T.

The Maximum Likelihood estimate p we wish to calculate is constrained along

the corresponding ray of the main camera and has only one degree of freedom.

We can express this as p(z) = (Cmain)−I (m + zd), where m = (x, y, 0, 1)T and

d = (0, 0, 1, 0)T. Recall that (according to the convention used in this work)

values of z ∈ [−1, 1] give points in the visible camera range along the line through

the camera center. Via the choice of this unknown z, we try to maximize the

combined probability density of all side cameras’ distributions.

Each vector si is formed by the estimated coordinates of the same scene point

p as projected from the respective side camera Ci. In practice, its value is ob-

tained from an optical flow field. It is assumed to be related to the exact value

π(Cip) as si = π(Cip) + ni, where ni is a random vector normally distributed

with covariance matrix Σi. This situation is illustrated in Figure 2.2, with the

probability distributions rendered as dashed ellipses and cones.

For a screen-space vector x, the probability density given by a side camera’s

distribution that it is the exact value is exp(−‖x− si‖2
Σi

), up to a multiplicative
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Figure 2.2: Illustration of the triangulation problem with two side cameras.

constant. The mapping ‖ · ‖Σ is the Mahalanobis norm: ‖v‖2
Σ = vT(Σ)−Iv. The

combined probability density of all cameras is the product of these exponentials.

Thanks to the fact that exp(−x) is a strictly decreasing function, maximizing

its value equals minimizing x. In our case, the argument x is the sum of Maha-

lanobis distances in each side camera’s projection with respect to its covariance

matrix Σi. It may be viewed as an energy function to be minimized by moving

the triangulated point along its only degree of freedom:

E(z) =
∑
i

‖π(Cip(z))− si‖2
Σi =

∑
i

(
π(Cip(z))− si

)T
(Σi)−I

(
π(Cip(z))− si

)
.

Due to the projective division, E(z) is not a polynomial and therefore imprac-

tical to minimize explicitly. Instead, we use the Gauss-Newton method. It has a

good intuitive motivation, so we describe the process in more detail.

Because the current scene surface Ŝ gives us a good initial estimate for z,

we can approximate the camera projections π
(
Ci(Cmain)−Ix

)
as affine mappings

Ji
Ci

around p(z) = m + zd, by taking partial derivatives. Formally, each JCi is a

2×4 Jacobian matrix, but we use only its third column Ji
Ci

d. This approximation

leads to a quadratic function

Êz(ζ) =
∑
i

(
ζJiCid + π(Cip(z))− si

)T
(Σi)−I

(
ζJiCid + π(Cip(z))− si

)
,

which is minimized at ζ = −Ê ′z(0)/Ê ′′z (0). We then update the value of z, setting

z ← z + ζ. Because the affine approximation might be too crude, we re-estimate

Êz for the new value of z and iterate.

When the minimization converges, we return p(z) = (Cmain)−I (m + zd). We

also calculate the corresponding probability, i.e., exp(−E(z)).
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2.4 Normal estimation

In order to apply the Poisson reconstruction method to a point cloud, the surface

normals corresponding to each point need to be estimated. Each triangulated

point originates from a pixel in the main camera’s frame. We can exploit this

fact: assuming that the scene surface is mostly flat, points corresponding to

neighboring pixels in the frame should form a mostly flat shape in the scene. A

wide enough neighborhood must be considered so that it really resembles a surface

to make the estimation sufficiently robust against noise. We can obtain normals

for the whole point cloud by repeating the calculation for the neighborhood of

each point.

Name: the normal estimation problem.

Input: a set {xi} ⊂ R3 of noisy points sampled across a flat

surface.

Output: estimated normal n of the surface.

We view this set of points as samples of a random variable and calculate its

3 × 3 covariance matrix Σ. This covariance matrix roughly describes the spread

of the points in any given direction. If size of the neighborhood is significantly

larger than the amount of noise, then the covariance will be the smallest along the

surface normal. This direction is exactly the smallest eigenvector of the covariance

matrix and can be easily extracted using Singular Value Decomposition. This

technique of extracting eigenvectors from covariance matrices of given data is

known as the Principal Component Analysis.

Note that the result is defined only up to a sign. In practice, we set the

orientation so that the normal faces a majority of the cameras from which it is

visible.
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3. Heuristics

This chapter presents the novel algorithms applied by our method. They are

all heuristic algorithms. The reason for this is partially that the tasks being

solved are not rigorously defined from theoretical perspective. Rather, some

mathematical interpretation of these tasks is first necessary to turn them into

proper algorithmic problems. Furthermore, due to an inherent ambiguity in these

problems, any algorithm solving these can be easily forced to fail under artificial

conditions.

3.1 Camera selection

The scene updating process, as outlined in Section 1.1, compares several frames

corresponding to side cameras to a single frame corresponding to a camera de-

noted as the main one. The effect of each such substep is local, limited to the

scene structure visible to the main camera, and the accuracy and amount of in-

formation obtained depends on the spatial configuration of the cameras. The

computational costs are mostly linear in the number of cameras used, dominated

by calculating the optical flow.

In this section we design an algorithm to choose the cameras for all such

update steps to be performed during one iteration of the main algorithm — that

is, to choose several main cameras and for each of these one or more side cameras.

The result of scene reconstruction is defined only up to Euclidean transformations,

so this selection heuristic should be invariant under these. The camera motion

during the acquisition might have been completely arbitrary (specifically, the

camera might have stalled for a long time), so the heuristic should not rely on

the order of frames in the sequence. Robustness against such irregularities may

be formulated as the selection heuristic being invariant under permutation of

frames in the sequence. Finally, it would be pleasant for the number of cameras

chosen to grow sublinearly if the sequence is extended only by frames that do not

provide any new visual information about the scene.

We begin by presenting a formal derivation of a heuristic scheme to choose

the camera set. The scheme is subsequently modified to provide better efficiency.

Name: the camera selection problem.

Input: estimated mesh surface S; set of cameras Ci.

Output: set C of one or more reprojection pairs, each of which

contains one main one side camera.
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Formally, the problem can be stated as maximization of an implicit fitness

function:

F (C) =
1

|S|

∫
S
w(p,S, C)dp− α|C|, (3.1)

where w(p,S, C) is supposed to estimate how accurately is the surface point

p imaged by the given set C of camera pairs, and α allows to weigh between

precision of the result and speed.

The key decision is how to define w. We constrain it to the form

w(p,S, C) =
∑

(Cmain,Cside)∈C

ws(p,S, Cmain, Cside) (3.2)

for some function ws. Separating the cameras’ influence in this way may bring

in significant inaccuracy as cameras with similar viewpoints are highly correlated

sources of information. To some extent, we try to improve on that later.

However, the problem is now much easier to handle because we can describe

the improvement gained by adding a camera pair Ck, Cl:

F (C ·∪(Ck, Cl))− F (C) =
1

|S|

∫
S
ws(p,S, Ck, Cl)dp− α. (3.3)

This allows us to easily decide if a given pair (Ck, Cl) should be included in the

selection by testing if this improvement is positive. We can make an approxi-

mation to the integral and return all camera pairs that pass a certain threshold,

namely α|S|.
An easy way to approximate a surface integral is uniformly random sampling:

|P |
∫
S
f(p)dp = EP

(
|S|
∑
pi∈P

f(pi)
)

(3.4)

for a random finite subset P ⊂ S. Using this approximation, the constraint of

positive improvement reads:

1

|S|

∫
S
ws(p,S, Ck, Cl)dp =

1

|P |
EP

(∑
pi∈P

ws(p
i,S, Ck, Cl)

)
. (3.5)

A similar approach with non-uniform sampling can be applied to a product

of functions of a single parameter i ∈ N as follows: f(i)g(i) = Er

(
I(r = i) · N ·

g(i)
)
, where N =

∑
i f(i) and r is sampled with probability proportional to f(i),

namely: Prob[r = i] = f(i)/N . This approximation is useful when evaluating

g(i) is computationally expensive, but it works in the trivial case g(i) = 1 as well.

Therefore, we begin by separating out of ws the component wm not dependent

on the side camera: ws(p,S, Ck, Cl) = wm(p,S, Ck)ws(p,S,Ck,Cl)
wm(p,S,Ck)

. This clearly holds

if wm is nonzero on the whole support of ws.
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For the final formula, we pack the random points pi and pairs of random

indices ki, li for both cameras all together into a single sampling set I. The prob-

ability distributions of ki and li are designed to suit the approximation scheme:

Prob[ki = k] = wm(pi,S, Ck)/Ni and

Prob[li = l] = ws(p,S, Ck
i

, Cl)/
(
wm(p,S, Cki) ·Mi

)
, (3.6)

where Ni =
∑

k wm(pi,S, Ck) and Mi =
∑

l ws(p
i,S, Cki , Cl)/wm(pi,S, Cki).

The constraint of positive improvement is then stated as follows:

1

|P |
EP

(∑
pi∈P

ws(p
i,S, Ck, Cl)

)
=

1

|I|
EI

( ∑
(pi,ki,li)∈I

I(ki = k)I(li = l)Ni·Mi

)
> α.

(3.7)

This reformulated constraint leads to the correct solution only asymptotically

with growing |I|. Particularly, each triplet from I can lead to picking at most one

camera pair, so for a C chosen this way it holds that |C| ≤ |I|. This by-product

is convenient for us, as it allows to directly limit the count of cameras chosen.

The resulting heuristic is much simpler than its derivation. It chooses a suit-

able sample count |I|, generates random triplets along the given distributions and

evaluates Ni ·Mi,k/|I| to check if they meet some threshold α. If they do, the

corresponding camera pair Ck, Cl is added to the output set. If they do not, we

have to remember Ni ·Mi,k/|I| from this attempt in case we would pick the same

camera pair again; the new value is added up before the threshold check.

Before we deviate from this scheme, let us give formulas for wm and ws.

Using wm, we wish to express how well is the surface patch around p displayed

by the given camera:

wm(p,S, C) =
cos(θ)

d(C,p)2
· V (S,p↔ c) · I

(
π(Cp) ∈ Ω

)
, (3.8)

where c is the camera center of C, θ is angle between the surface normal at p and

the direction p→ c, and where d(C,p) is the distance of point p from c projected

onto the viewing axis of C. The visibility function V (S,p ↔ c) is 1 if the open

line segment between p and c does not intersect S, otherwise 0. The indicator

function I works similarly, in this case it tells whether p is projected inside of

the image domain. Note that wm is proportional to the area of a surface patch

around p as projected by C.

Our function ws applies the same weighting using both cameras, but at the

same time tries to (roughly) maximize the parallax between them. For that

reason, we design a camera P centered at p and oriented along the surface normal,

with an arbitrary focal length f . Furthermore, let us denote the centers of Ck, Cl
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µ
d

(a) Weights wm for a given point; d = d(C,p)

a

(b) Weights ws for a given point and
main camera; a = |π(Pck)− π(Pcl)|

Figure 3.1: Illustration of the (unmodified) weights assigned to different cameras.

by ck, cl, respectively. Then,

ws(p,S, Ck, Cl) = wm(p,S, Ck) · wm(p,S, Cl) · 1

f 2
|π(Pck)− π(Pcl)|2. (3.9)

This includes the special but important case that ws is zero if k = l. Note that P

is helpful when calculating wm as well; this is discussed in detail in Section 4.4.

The weighting is shown for a model setting on Figure 3.1. Cameras are ren-

dered as triangles and weights assigned to them is depicted by the radius of the

circle around their center. In Fig. 3.1a, weights for various possible main cameras

are shown. In Fig. 3.1b, the camera drawn with an outline was chosen as the

main camera, and weights are shown for choosing a corresponding side camera.

A trouble of this scheme is, as mentioned in the beginning, that we neglect

correlation of frames corresponding to cameras that are close to each other. It

appears difficult to design a scheme that would account for that effect correctly,

as it can easily lead to solving an NP-hard graph problem. Instead, we let our

scheme cut down the overall count of used cameras by weighting up those cameras

that were chosen earlier, if they are applicable for the given point p. This is

the actual reason we approximate the weighting functions by random sampling.

The modification is remarkably stronger for main cameras, as all side cameras

assigned to it will be used in the triangulation at once: adding another side

camera improves accuracy of the points without increasing their count.

We let the actual weights be

w′m(. . .) = wm(. . .) ·
(
1 + cm · usedm(k)

)
and

w′s(. . .) = ws(. . .) ·
(
1 + cs · useds(k, l)

)
, (3.10)

where the values of cm and cs are adapted to the total camera count (cm � cs),
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and where the functions usedm, useds are indicators of whether the cameras of

the given indices have been already selected. Note that the unmodified version

of wm is still used inside w′s.

3.2 Reprojection

This section describes an image transformation that takes place before the optical

flow calculation, and explains how to interpret the optical flow on the transformed

image. The aim of this intermediary step is to improve the accuracy of the optical

flow: in order to obtain reliable depth information, we need to use pairs of images

with wide parallax. Unfortunately, both the optical flow algorithms discussed in

Section 2.2 tend to perform badly if the optical flow contains large displacements.

Name: the reprojection problem.

Input: one side camera Ci and its frame Ii; main camera Cmain;

estimated scene surface Ŝ.

Output: predicted image Pi; affine transformation matrix {Ax,y ∈
R2×2} for each pixel.

Our solution to this might be viewed as a pre-warping step for the optical flow

based on the current estimate of the scene to be reconstructed. For a given frame

Ii viewed by a side camera, we generate a prediction image Pi by back-projecting

Ii onto the scene surface and rendering the textured scene from the main camera.

To formally state this, we consider the raycasting function from 3D rendering

literature:

Definition 5. The raycasting function r(C,x,S) returns the point p on scene

surface S ⊂ P3 seen by camera C ∈ R4×4 at image coordinates x ∈ R2.

This concept is, in a sense, a counterpart to the projective division function

π defined at the beginning of Section 2.3. The inversion of r with respect to x is

the camera projection: π (C · r(C,x,S)) = x. As long as the point p is visible in

the camera C, inversion in the opposite direction r(C, π(Cp),S) = p also works.

The reprojection transformation produces an image Pi using the following

formula:

Pi(x) = Ii ◦ π
(
Cir
(
Cmain,x, Ŝ

))
. (3.11)

Note that it contains only color values from the input image, so it can be viewed

as image warping by a displacement field warp+(x), where

warp+(x) = π
(
Cir
(
Cmain,x, Ŝ

))
. (3.12)
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The pixels of Pi with undefined value (if the result of raycasting is undefined or

the source position would be outside the image domain Ω) are specifically marked,

e.g., set to full transparency.

Camera projection can be locally well approximated by an affine mapping.

Under the assumption that the scene surface is locally well approximated as a

flat plane, we can compose the affine approximations of π, Ci and r to local-

ly approximate warp+
(
(x, y)T

)
by an affine mapping R2 → R2. The constant

component of it is the actual value of warp+ at the given pixel coordinates. The

matrix Ax,y describing the linear component of this mapping is calculated for each

pixel (x, y)T where Pi

(
(x, y)T

)
is defined. These matrices will be later used to

obtain covariance matrices for point triangulation.

This reprojection scheme is supposed to help calculating an optical flow be-

tween the side camera frame Ii and a main camera frame Im by converting it to

an optical flow problem between Pi and Im. For the sake of completeness, we

formulate the original flow field to be computed, assuming that the function flow

relating Pi to Im has been calculated such that Im(x) = Pi

(
x + flow(x)

)
. By

substitution it follows that each pixel x in Im corresponds to coordinates s in the

input image Ii for

s = warp+ ◦ flow+(x) = π
(
Cir
(
Cmain,x + flow(x), Ŝ

))
. (3.13)

3.3 Estimating the optical flow error

Our point triangulation function takes as an input the estimated screen-space po-

sitions along with their respective covariance matrices. These covariance matrices

are not known, but their values may have significant impact on the accuracy of

the triangulation. Therefore, we would like to estimate them as accurately as

possible.

Name: the error estimation problem.

Input: two images I, P related by (noisy) displacement field

flow; set of affine projection matrices {Ax,y} approxi-

mating the reprojection warping as defined Section 3.2.

Output: set of covariance matrices {Σx,y}.

In other words, we want to approximate the probability density of the com-

posite function warp+ ◦flow+ by a bivariate normal (Gaussian) distribution. The

function warp+ is produced by reprojection, as described in the previous section,

and is defined by Equation 3.12. A formula for the composite function is given
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by equation 3.13. The noise we consider originates from the computation of the

flow function,1 for which one of the algorithms presented in Section 2.2 is used.

To formalize the noise, we assume that flow(x) = d(x) + n(x), where d(x)

is the actual exact displacement and n(x) is for each x an independent random

variable following a zero-mean normal distribution. This assumption is far from

being realistic: the noise in each pixel of the optical flow is heavily correlated

with the values in its neighbourhood. Thus, the actual distribution needs not

be zero-mean and tends to produce gross outliers in the presence of repeating

patterns. The zero-mean normal distribution model is chosen mainly because it

is easy to deal with.

A bivariate zero-mean normal distribution is uniquely defined by its 2 × 2

covariance matrix Σ. We firstly estimate this matrix as diag(σ2, σ2), based on

local similarity of the warped image P ◦flow+ to I, and then we consider how this

matrix transforms under the mapping of warp+, to obtain probability distribution

of the composite function warp+ ◦ flow+.

Variance σ2 is estimated separately for each pixel in main camera’s frame as

a simple L1 norm difference between the warped image and its target. Because

both the optical flow algorithms considered sequentially combine results from

different levels of the scale pyramid,2 we also estimate the difference on each level

of the pyramid and sum the correctly scaled results for each pixel of the image to

obtain its variance. Details about the relation between values of this norm and

the corresponding variance are presented in Section 5.1.

An improvement could possibly be achieved by considering the amount of

information available to the optical flow calculation as well. For example, regions

of constant color do not supply any useful data, and straight lines constrain the

flow only in one direction. We however did not continue in this direction since

without realistic testing data it could lead to overfitting and practically useless

results.

In order to keep the distribution of si normally distributed as well, the re-

projection function warp+ is locally approximated as affine mapping of the form

a(x) = Ax + a0, where A = Ax,y and a0 = warp+
(
(x, y)T

)
. Under such a mapping,

a random vector x following normal distribution with covariance matrix Σ maps

to a normally distributed random vector a(x) with covariance matrix AΣAT.

The proof the last-mentioned statement is intensive on notation, but otherwise

1Image displacements resulting in similar noise can be introduced by lossy video compression.
More details on this matter are given in Section A.3. However, we do not specifically account
for such noise, as it would require (at least) to expect it in the main camera’s frame too.

2The scale pyramid, or Gaussian pyramid, is obtained by repetitively scaling down the image
by a given factor, optionally applying Gaussian blur before each scaling. Pre-calculating optical
flow recursively on a downscaled version of the image, as used in Section 2.2, can be viewed as
a step one level up the scale pyramid.
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straightforward:

cov
(
(Ax)i, (Ax)j

)
= cov

(∑
k

(Aikxk),
∑
l

(Ajlxl)
)

=
∑
k

(
Aik
∑
l

cov(xk,xl)Ajl

)
=
∑
k

(
Aik
∑
l

ΣklA
T
lj

)
=
∑
k

Aik(ΣAT)kj = (AΣAT)ij, (3.14)

where the second equality follows from the linearity of covariance.

3.4 Point cloud filtering

The purpose of filtering is twofold here. Firstly, we want to detect outliers in the

point cloud data and remove them. These outliers can result from several of the

preceding stages and have not been dealt with in any way yet. Secondly, it is

probable that some areas of the resulting point cloud will contain unnecessarily

many samples. The applied polygonization algorithms may be computationally

expensive, so we prefer to choose a small subset of the point cloud that represents

the surface well.

Name: the point cloud filtering problem.

Input: a set X = {xi} ⊂ R3 of points along with their associ-

ated certainty values wi and a filtering radius α.

Output: a subset ofX sufficiently describing the (unknown) scene

surface.

Our algorithm works in two steps. Firstly, it estimates a local density around

each point in the point cloud. This density is defined recursively as the sum

of the densities of the points in a neighborhood weighted by a function of their

distance. Such an approach is supposed to filter out even small contiguous patches

of outliers. The radius of the neighborhood considered is the input parameter

α.

Then, it processes all points ordered by their descending density. If the density

of a point satisfies a certain threshold, it is added to the result and a subtractive

penalty is assigned to the density of each of its neighbors. This process should

result in choosing just a few most important points in each sphere of radius α.

Formally, the vector of densities d is defined as a vector that satisfies

d = clamp

(
Ad

‖Ad‖

)
,
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where

Aij = Aji =

1− |xi − xj|/α for i 6= j and |xi − xj| < α

0 otherwise

and

clamp(d)i =

di for di < 2

2 otherwise.

The above definition of d resembles the definition of an eigenvector of A, except for

the clamping applied. It is found by the classical power iteration method modified

along this difference. We use the L1 norm as the mapping ‖ · ‖. The process

appears to converge quickly in practical settings. However, since the convergence

is not formally ensured, we limit the number of iterations to a suitable constant.

The algorithm proceeds by assigning each point a variable ‘score’ si, initialized

as si ← di for all i. It then processes all the points in order of their decreasing

densities di. In the case of equal densities, the order is randomized. If score of

the point xi being currently processed passes a threshold si ≥ t, we add xi to the

output. The parameter t may be arbitrarily chosen between 0 < t < 2; setting

t = 1 seems to work well in practice. After processing each point, the score of all

its α-neighbors xk is decreased, depending on their distance and the (unmodified)

density di:

sk ← sk − di ·
(
1− |xk − xi|/α

)
Note that the score of a point may become negative.

The process stops after processing all points with di ≥ t, or optionally after

generating a user-defined number of filtered points on the output.
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4. Implementation

We now give an overview of the resulting program, and comment on the interac-

tion of the individual algorithms utilized in the pipeline.

The whole reconstruction process is shown in Figure 4.1a: at the top, we

have the input video sequence, the initial point cloud and the camera calibration

parameters, and at the bottom, a reconstructed mesh is returned. Operations

are depicted as boxes with sharp corners, data are the rounded ones. Diamond

boxes with a question mark denote decisions made by a heuristic algorithm.

points

®-shape calculation

mesh

scene update

corrections

mesh output

?

camerasvideo

(a) Overall scheme of the program

cameras video

point sampling

filtering

Poisson reconstruction

voxel data

marching cubes

mesh

?

points

mesh

(b) Expansion of the ‘scene update’ stage

selection

main

reprojection

optical flow

flows

triangulation

predictions

points

cameras video mesh

cameraframe

side

camerasframes

memory

(c) Expansion of the ‘point sampling’ stage

Figure 4.1: Scheme of operation of the whole program.
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We start by preprocessing the whole video sequence, as described in Section

4.2. An alpha shape is calculated for the input points and along with the cameras

and processed video, they are fed as input to the ‘scene update’ box. The output

of the scene update stage is always a new mesh estimate of the scene. The

subsequent decision box considers if the amount of detail obtained or the number

of iterations performed suits the user’s requirements, and if not, redirects this

mesh as the input of the next update iteration.

Figure 4.1b shows the update process. Firstly, a new point cloud is accumu-

lated by joining output obtained over several runs of the ‘point sampling’ stage.

Each run corresponds to one main camera, so their count is also chosen by the

camera selection heuristic. The results are not plain 3D points; each member

of the cloud is assigned a normal and a precision. Normals of the points are

estimated from their neighborhood in the main camera’s frame, as described in

Section 2.4. The precision is calculated from the combined probability of the

triangulated result. However, to obtain results fair to all samples triangulated

using a varying number n of side cameras, we set the precision to n-th root of

the combined probability. We join this new cloud with the current one: regions

where the current cloud is incorrect should get filtered out in the upcoming step.

The point cloud is filtered for outliers using the algorithm described in Sec-

tion 3.4. The necessary value of α is obtained from the initial alpha shape calcu-

lation, and is divided by a custom factor after each iteration.The filtered points,

their normals and the precision are fed to the Poisson reconstruction, which can

make use of all these values. The resulting volumetric data is polygonized using

the ‘marching cubes’ algorithm.

Figure 4.1c shows the process of obtaining a point cloud. As the first step, a

main camera and one or more side cameras are selected by the heuristic designed

in Section 3.1, using the current scene estimate and information about which

cameras were selected previously. In the practical implementation, all the cameras

to be used during a scene update iteration are selected all at once in advance and

later read from memory, since the result is equivalent.

The frame Ii corresponding to each selected side camera Ci is reprojected

from the main camera using the method described in Section 3.2, obtaining an

image Pi predicted by the side camera. An optical flow field is calculated for each

predicted image that relates it to the frame of the main camera Im.

The triangulation processes only pixels of the main camera that depict the

surface of the current scene estimate. For any such pixel (x, y)T, estimated coor-

dinates si in the frame of a side camera Ci can be obtained by evaluating Equa-

tion 3.13 from Section 3.2. Furthermore, a covariance matrix Σi corresponding to

the given pixel and side camera is obtained using the process described in Section

3.3. From these values, a scene-space point p ∈ R3 is triangulated, as described
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in Section 2.3. The probability density of each resulting point is stored.

After triangulation is finished for all available pixels, a normal vector is esti-

mated for each of them using the method of Section 2.4.

4.1 Polygonization methods

We use alpha shapes for the first polygonization of the input point cloud and the

Poisson reconstruction in all subsequent iterations.

Alpha shapes provide an excellent tool for polygonization of points uniformly

distributed over a connected volume: in such a case, the α parameter will likely

be estimated correctly, and the corresponding α-shape will tightly enclose the

whole volume. However, there are many reasons against using them on the data

considered here.

If the point cloud contains more details in a small portion of the input, it

will be smoothed out due to the global character of the α value. As described

in Section 2.1.1, we let the α radius be as small as possible so that all input

vertices are included in one component of the resulting mesh. In particular, the

result is nearly useless if the input consists of several separate parts: α must be

chosen large enough to bridge them all, thus removing all details whatsoever.

The same applies in the presence of outliers, so if alpha shapes would be applied

for polygonization, the point filtering stage would be of enormous importance. If

the initial point cloud is not polygonized by the alpha shape calculation properly,

the user can bypass it by supplying the initial mesh directly.

Figure 4.2a displays the alpha shape of the Stanford bunny point set if half

of it is moved apart.1 To show the contrast, Fig. 4.2b shows the corresponding

result of the Poisson reconstruction. Ears of the bunny are not reconstructed

properly because normals of the point set were only inexactly estimated before

the calculation.

Poisson reconstruction is well suited to processing noisy data and repeated

structures that typically arise when triangulating a patch of surface independently

twice. It relies on the surface normals, which is often an advantage, as can be

explained by comparing the behavior of the two algorithms on real-world data.

Because the triangulation produces points only on (supposed) scene surfaces,

volume inside of solids will be free of any samples. In such cases, alpha shapes

often produce a two-layer mesh that encapsulates the noise around the sampled

surface from both sides. Poisson reconstruction usually manages to recognize all

these samples as noisy representations of a single thing, and creates the output

surface through the densest region.

Finally, using the Poisson reconstruction on the initial cloud is difficult, as the

1No bunnies have been harmed during the preparation of assets for this thesis.
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(a) Alpha shape of the Stanford bunny
split in half

(b) Poisson reconstruction of the Stanford
bunny split in half

Figure 4.2: Comparison of behavior of both polygonization algorithms on data
with a gap.

input does not include any estimation of point normals. We tried to average the

directions from which each point is viewed by the cameras, but such approach

clearly fails if a surface is always displayed from the same direction, which is

typically the case of the floor. The results of these experiments only reaffirmed

the importance of correct normals, as they often did not resemble the scene at

all.

A drawback of the Poisson reconstruction for our purposes is that it is designed

for scenes with good volumetric representation. Such representation is rather in-

appropriate for reconstruction of bounded concave surfaces, such as when record-

ing a corner of a room. In these cases, the volume to be reconstructed is sampled

only from one side: no complications would arise if we tried to reconstruct the

room as a whole. In regions free of any input samples, the optimal solution to the

Poisson problem will simply try to minimize the surface area. Unfortunately, this

may often lead to creating a surface between the cameras and the scene surface

being reconstructed. Subsequent iterations of our algorithm would then obtain

very misleading input.

This issue is illustrated in Figure 4.3. The cameras are depicted as triangles

on the left, the actual scene is rendered in solid lines on the right. A possible

surface resulting from the Poisson reconstruction is drawn in dotted smooth line.

In Fig. 4.3a, the scene is a convex surface and the excessive surface is located on

the back of it. Fig. 4.3b illustrates the troublesome reconstruction of a concave

scene: the excessive surface that encloses the reconstructed volume is located

between the camera and the actual scene, so that it will harm the subsequent

iterations of the reconstruction. A similar bubble-like surface is noticeable also in

Fig. 4.2b in the cut and bottom side of the bunny, as these regions do not contain

any samples.
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(a) Convex scene (b) Concave scene

Figure 4.3: Illustration of an undesired result of the Poisson reconstruction.

4.2 Video corrections

An operation in Figure 4.1a that was not mentioned yet is the ‘corrections’ box.

Firstly, we correct the radial distortion, based on nonlinearity parameters that

may be given in the input file. This is just another image warping transformation;

its theoretical background is provided in Section A.2 in the attachments.

Secondly, if requested by the user, we try to revert the color adaptation per-

formed by the camera; more details about its origin are discussed in Section A.1.

Since both the optical flow algorithms considered work on grayscale images only,

all we need is to stabilize the luminance of the sequence. We assume that to

each frame i corresponds a linear mapping li : R3 → R calculating the correct

luminance from the input RGB values. We further assume that points of the

initial cloud, where visible, are of constant luminance under this mapping; that

is, if pk is visible on frame i, then li ◦ Ii ◦ π(Cipk) = ck for some constant ck. The

mappings li can be expressed as dot products with unknown vectors li:

li
(
(r, g, b)T

)
= (r, g, b)T · li. (4.1)

We solve for all l and c by alternating optimization, although we are interested

in the vectors l only. To start, we assume li = (1, 1, 1)T for all i and obtain each ck

by averaging luminance of the given point in all relevant frames. Then, we assume

the values c calculated in this way are correct, and find li for each frame that

minimizes
∑

k |ck − Ii
(
π(Cipk)

)T · li| over all k such that pk is not oversaturated

in the given frame; this condition typically implies Ii
(
π(Cipk)

)
∈ {1, . . . , 254}3.

If there are less than three such points, we consider the oversaturated ones too.

Then, we continue by re-estimating c and make a few iterations of this entire

process.
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4.3 Optical flow algorithms

The two algorithms for the calculation of the optical flow presented in Section

2.2 differ not only in the way of approximating the images but more importantly

in what kind of smoothness they assume in the resulting flow field. The linear

approximation scheme based on the approach by Horn and Schunck imposes

a global smoothness constraint, whereas the result of Farnebäck’s algorithm is

smooth only due to fitting the result over a neighborhood (i.e., locally).

Although some sources regard the linear approximation scheme as outdated,2

it has been shown to have a performance superior to the Farnebäck’s algorithm if

an adequate penalization function Ψ is applied [19]. Unfortunately, the OpenCV

implementation adopted in our program sets Ψ to the identity function and so

does not allow discontinuities in the flow field, which may be necessary for correct

reconstruction of many scenes. Nevertheless, the linear approximation scheme

may provide better results in the presence of repeated structures and textureless

regions.

4.4 Application of mesh rasterization

The reprojection, and specifically the raycasting function r as described in Sec-

tion 3.2 is performed by an OpenGL-faciliated offscreen rendering. We use a

custom GLSL fragment shader that samples the side camera’s frame in exact

correspondence to the formulas stated, and anisotropic mipmapping to preserve

details in the texture. The shader uses a simple shadow buffer to mask out areas

occluded to the side camera. To run correctly, it requires OpenGL 3.0 support;

although we expect compatibility problems, this standard should be supported

even by software rendering.

In the resulting image, the masked out regions and empty areas without scene

geometry are filled with the main camera’s frame. We use the optical flow al-

gorithms mostly as a black box, and we simply need to provide them with color

values for the whole image. Using this background effectively suggests zero flow

outside of the region of interest, which is probably the best guess we can make.

Along with the prediction frame, we render a depth map of the scene.3 We use

it to directly read off initial estimate of depth for triangulation of each pixel. No-

tice that although the depth map is nonlinear in its nature, its values are correct

z coordinates in camera space, so we can just apply inverse camera projection

2In the OpenCV library version 2, the algorithm is part of the ‘legacy’ module and called
‘obsolete’ in the documentation.

3A depth map, or Z-buffer, depicts the same (visible) surfaces as the corresponding rendered
image but its values are camera-space depth coordinates of the respective surface points.
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C−I to them without sophisticated remapping.4

From its gradient, we directly calculate the local warping matrices Ax,y. In the

first glance, it would seem more proper to obtain a normal pass from OpenGL

and calculate these matrices from it. Not only that using this depth map gradient

is much easier, but the details of scene geometry smeared out in the process are

exactly those smeared out in the predicted image by reprojection.

A depth map rendering is also used during camera selection (as described in

section 3.1) to cheaply estimate the visibility function. We render a depth map

of the scene using the camera P and check visibility of a given scene-space point x

by comparing the projected depth of Px to the depth image at the corresponding

coordinates.

4.5 User-defined parameters

The program offers four groups of parameters for tuning the stages of the calcu-

lation that we consider the most important.

A custom model may be supplied by the user as a replacement of the initial

alpha shape calculation. Clearly, the program may diverge from the correct solu-

tion or completely fail if the initial mesh reconstruction is too far from the real.

If the input point cloud is too sparse or otherwise misleading to alpha shapes,

providing such model is necessary.

The camera selection heuristic offers a few parameters as well. As described in

the corresponding section (3.1), there is a precision parameter α and a sampling

parameter to limit the maximal camera count |I|. Both of these are available to

the user.

The optical flow algorithms have their parameters. These often need to be

modified to suit the resolution of the sequence and its other characteristics. The

ones of them we consider the most important are exposed to the user of our

program.

Finally, the user may request to scale the whole sequence down before pro-

cessing, to speed up the calculation. The program can extract only every n-th

frame of the sequence and skip all others, for use on very lengthy videos.

4.6 Adopted libraries and practical remarks

The OpenCV library [7] is used for matrix arithmetic, image processing and a

few other utility functions. The library also provides us with the implementation

of both optical flow algorithms.

4Actually, a slight remapping is necessary: OpenGL defines camera space as [−1, 1]3 but
linearly maps the depth map values into the range [0, 1]. We have to map them back.
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Our program uses the CGAL library [8] for calculating the alpha shape and

the underlying Delaunay tessellation because by our observations, it is robust and

easy to use. It is rather slow on dense data, but not significantly slower compared

to other open-source libraries for Delaunay tessellations.

For the Poisson reconstruction, the Point Cloud Library (PCL, [9]) is used.

Its code is mostly the original implementation by Michael Kazhdan and Matthew

Bolitho, who released it under the GNU GPL license [26]. However, installing

the PCL library may be difficult; because of this, the CGAL implementation of

Poisson reconstruction may be used instead. Note that the CGAL implementa-

tion represents the volume using Delaunay tessellation instead of an octree, and

therefore also uses a different algorithm for polygonization. We did not describe

these algorithms in this text; by practical observations, they produce nicer results

but are considerably slower compared to PCL.

The implementation of our method, provided as attachment to this thesis,

is not designed for an end user. It is limited to Linux systems running the X

window system and it has no interactive controls. We however hope that it can

serve as a basis for reusing the algorithm elsewhere, or for further testing and

improvements of the method.

Reconstruction of a typical video sequence — consisting of hundreds to thou-

sands of frames — may take over an hour, depending on the particular scene

and other circumstances. To a certain amount, this is reasonable, considered the

amount of data to be processed and our initial aim to extract as much scene

information out of it as possible. If a faster operation is desired, the parameters

should allow for a speedup in orders of magnitude, at the cost of less detailed

reconstruction.
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5. Evaluation

5.1 Error of the optical flow

In Section 3.3, we explained how the L1 norm is used for a posteriori error estimate

of the optical flow. Here, we try to justify this choice by testing on scenes with

known ground truth.

We evaluate (only) Farnebäck’s optical flow algorithm on two artificial scenes.

They both consist of a flat plane displaced by Perlin noise. Its texture is Perlin

noise as well, with different parameters. One camera views it perpendicularly,

the other from an angle. The rendered image is 640× 640 pixels in size.

As already stated, we assume the optical flow is distorted by circular Gaussian

additive noise with unknown variance σ2. Then, the square of the radius of the

noise values shall follow an (appropriately scaled) χ2 distribution with variance

4σ4; it is scaled by a factor σ2. Knowing the ground truth, we know the noise

values and can make a maximum likelihood estimate of its variance.

Probability density of the scaled χ2 distribution is p(R) = 1
2s

exp(−R
s
) for

s = σ2 and R = r2 being the squared radius. We find s such that the probability

P (R1, . . . , Rn|s) is maximized; it is the best option as we have no priors for P (s)

nor P (Ri). The probability is a product of P (Ri|s), i.e., of known distributions.

It is maximized at

s =

∑
iRi

n
. (5.1)

The values of s obtained this way are shown in Figure 5.1 in a log-log plot.

The plot shows two solid lines, each corresponding to a set of values obtained from

a scene as described, and both scenes differing only in noise seed. Each value was

estimated from n = 50 samples, out of 3 · 104 samples per scene. Dotted lines

show a suggested asymptotic curve.

For a small viewing angle (Fig. 5.1a), the dependency seems to be linear.

However, as the angle increases (Fig. 5.1b), it deteriorates to some extent to a

quadratic dependency. The change may be caused by the prevailing occlusions.

In real scenarios, we do not know the viewing angle, but expect it to be rather

small. Since a linear factor of the mapping cancels out for the purposes of the

minimization, it is justified to use the L1 norm directly.
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Figure 5.1: Estimated values of s = σ2 for varying squared radii R = r2 of noise.

5.2 Testing sequences

5.2.1 Perlin sphere

We executed the algorithm on a rendered sequence of a subdivided icosahedron

with Perlin texture. The sequence consists of 30 frames at resolution 640 × 480

during which the camera moves over a 108◦-arc centered at the sphere. An

example frame of the sequence is shown on Figure 5.2a. There are no occlusions

on the front side of the model. Its convex shape is perfectly suited for Poisson

reconstruction.

The resulting mesh reconstructed from this model sequence is indeed accurate.

Figure 5.2b shows the initial scene estimate, generated as alpha-shape from 21

points. Figures 5.2c and 5.2d show the result after the first iteration and the

ground truth scene, respectively. Farnebäck’s optical flow algorithm was used

since the scene provides enough texture. Also, the camera selection threshold

was increased from the default value. The triangulated point cloud consisted of

over 500,000 points, out of which about 80,000 passed the filtering stage. The

reconstruction took 6 minutes on an Intel Core2 workstation.

5.2.2 Stone relief

This sequence consists of 230 images of a stone relief in the portal of a cathedral.

An example frame of the sequence is shown in Figure 5.3a. The image is slightly

blurry, but the diffuse stone surfaces nevertheless provide very good texture for

the optical flow calculation. The Farnebäck’s algorithm has been used.
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(a) A frame of the sequence (b) Initial scene estimate

(c) Reconstruction after the first iteration (d) Ground truth

Figure 5.2: Reconstruction of the ‘Perlin sphere’ synthetic sequence.

The sequence was taken at high noon and the camera applied a rather strong

color adaptation during the recording. Therefore, the exposure normalization

feature of our program had to be enabled during the reconstruction. Figure 5.3b

shows the initial scene estimate, which is an alpha shape of 23 points. Figures

5.3c and 5.3d display the result of reconstruction after the first and the second

iteration, respectively. Clearly, the result improves, which can be seen as a jus-

tification of our iterative reconstruction approach. Each of these iterations took

10 and 16 minutes, respectively, on an Intel Core2 workstation.

5.2.3 Glossy car

This sequence consists of 293 frames depicting a static Opel Meriva car on a

mostly sunny day (one of these is shown in Figure 5.4a). It is provided as an

example of failure of the assumptions: reflections on the surfaces of the car are

much more prominent than their actual texture. Because of this, the optical flow

calculation cannot provide any good results and no useful data is extracted from

the video.

To exaggerate the effect, we supplied the program with a model of the car
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(a) A frame of the sequence (b) Initial scene estimate

(c) Reconstruction after the first iteration (d) Recon. after the second iteration

Figure 5.3: Reconstruction of the ‘stone relief’ sequence (Cathedral Saint-Étienne
de Metz, France).

(a) A frame of the sequence (b) Initial scene estimate
(c) Reconstruction after the
first iteration

Figure 5.4: Reconstruction of the ‘Opel Meriva’ sequence.

(shown in Fig. 5.4b). The scene reconstruction diverges from the (mostly correct)

initial estimate, especially on the windows where clouds are reflected with high

contrast. A result after the first iteration is shown in Figure 5.4c.

Triangulating the geometry of glossy surfaces seems intuitively possible, but

it would perhaps require a vastly different approach than the ours.
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6. Conclusion

We have presented an algorithm for iterative estimation of scene geometry from

a calibrated video sequence. Thanks to utilizing the camera calibration and

a priori scene estimate, it is robust against rough camera movement, such as

camera shake.

The algorithm is however very unstable if the initial scene estimate is far from

being accurate. In such a case, camera selection routine will give nearly random

results. Also, triangulation may diverge from the optimum if its starting depth

values are too inaccurate.

Such failure is often caused by the alpha shape calculation. Its performance

could probably be improved by using another heuristic for guessing the right value

of α, e.g., by maximizing the total face count. We did not make any experiments

with that; however, our program allows the user to bypass the initial tessellation

and supply a mesh directly on input. Another possible solution might be to

estimate a varying value of α on a local basis [17].

In many practical settings, it is necessary for the user to supply the mesh

scene estimate directly. However, we believe this is not a real issue, as the mesh

needs not be detailed. Simple solids or a subset of the convex hull of the initial

point cloud usually supply sufficient initial estimates.

The triangulation is imprecise if the camera motion does not provide views

with a wide parallax. This instability is inherent to the triangulation problem,

since a slight amount of noise can substantially degrade the result. Specifically,

the reconstruction from tracks such as the Yosemite sequence yields bad results

because the camera moves only in the forward direction.

The proposed point cloud filtering algorithm appears to serve its purpose well,

as long as it is supplied with meaningful data.

The threshold for the camera selection heuristic must be often altered by the

user, to obtain a solution in given time limits. The computational time can be

roughly guessed from the number of the main and side cameras selected for the

first iteration. In the following iterations, these numbers should not substantially

change. Apart from this choice of parameters, the algorithm runs without any

user interaction. This property allows it to be used for batch processing, possibly

on a remote server.

6.1 Future work

Accuracy of the optical flow calculation may be highly improved by imposing

the epipolar constraint : since the camera calibration is known, valid positions

of each remapped pixel are limited to a line in the image space. By further
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extending this idea, the optical flow calculation may be incorporated deeper into

the triangulation process. The triangulation could process image data directly,

minimizing the energy as defined in the Horn-Schunck scheme for all images at

once. We have tested this only briefly without any smoothness term, but the

results seemed surprisingly good.

The performance of the algorithm may be improved by outputting the trian-

gulated data in a format better suited for the subsequent Poisson reconstruction.

Instead of managing a point cloud, the triangulated results could be directly saved

into the octree, if its dimensions and depth could be reliably estimated.

Another speed gain could be rather easily attained by using downsampled

versions of the sequence in the first iterations of the algorithm. After this initial

phase, the resolution could be gradually increased to obtain a detailed scene

estimate. Furthermore, the resolution could be different for each set of selected

cameras, depending on their distance from the surface.
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Attachments

A Common types of video degradation

This appendix describes some of the most important aspects of video degradation

induced by typical consumer-grade cameras.

A.1 Colorimetric issues

Photographic sensors such as CCD1 are mostly insensitive to color. Typically, a

grid of color filters is placed in front of the sensor, so that each sensor cell receives

only a part of the incoming spectrum. If white light shines on cells of a single

color, the observed image will be tinted. This is noticeable in the presence of

fine straight line patterns in the scene, and is referred to as color moiré. Some

video camera designs overcome this problem by using a beam splitter and three

separate sensors for the individual color channels.

The amount of light incident on a sensor cell obeys the cosine law. Detected

values far from the image center are therefore darker. This fact is known as

vignetting.

Output of the camera sensor is usually linear in the amount of incident light

(within the range we are interested in). Many cameras support direct storage of

this data in the so-called raw format, each sample being a floating point value.

However, only professional-grade cameras allow to record video sequences in this

format, as it is too large and difficult to process by the end user.

Instead, the values are discretized and clamped, typically into the range of

{0, . . . , 255}. To make the image more distinctive and visually pleasant, a custom

camera response function is applied to the values before rounding them off. This

function is designed to compress the range of bright colors, mimicking classic film

cameras. Further, a white balance mapping is applied to all the three channels

at once, trying to emulate human eye’s color constancy. The transformation is

sometimes expressed by a matrix multiplication, but the camera manufacturer

may apply a more sophisticated mapping.

A.2 Optical distortions

Real camera projection exhibits nonlinearities, which can be diminished to some

extent by using more lenses and by precise lens manufacturing. Another option

is to restore the image by estimating and inverting the distortion.

1Charge Coupled Device (CCD) is the most common type of camera sensor at the time of
writing.
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(c) Pincushion distortion

Figure 6.1: Illustration of radial distortions on a photo (Church of the Savior on
Blood, Saint Petersburg).

The most prominent is the radial distortion, commonly called either barrel

(Figure 6.1b) or pincushion (Fig. 6.1c) distortion, depending on its shape. It is

best expressed as a mapping in polar coordinates, since it affects only the radius

of each projected point. We approximate the scaling of the radius as a cubic

function of the radius squared: rdistorted(r) = r · (1 + k1r
2 + k2r

4 + k3r
6). It is

preferred to remap the input images in the beginning; although it induces slight

blur, it saves us from inverting this function during projection.

A.3 Lossy video formats

Although a range of lossy video codecs are available, only few standards defined

by Motion Pictures Experts Group appear to be used by camera manufacturers

in practice. Here, we discuss the basic aspects of MPEG-4 AVC (also known

as H.264), because it is the newest and perhaps the most advanced of them.

However, most of these concepts are common to all of the codecs.

The sequence is saved frame-by-frame, with each frame further divided into

macroblocks of 16 × 16 pixels. The content of a macroblock is a sum of its

prediction and its residual signal. These values need not be stored explicitly.

Before using a frame in any way (such as displaying it), a deblocking filter is

applied to reduce grid-like artifacts caused by the compression.

Perhaps the strongest tool of the compression is the motion estimation. In

the case of motion-estimated macroblocks, the prediction values are copied (in-
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terpolated) from one or two other frames as encoded in the sequence. The source

area is of the same size, but displaced by a vector expressed up to a quarter-pixel

precision. A macroblock may be further subdivided into up to 16 parts with

distinct motion vectors.

If a macroblock is not motion estimated, each pixel of its prediction is a weight-

ed average of pixels neighboring on the top and left edge of the macroblock. The

weights are one of a few predefined simple schemes. Some frames of a sequence

do not contain any motion estimated macroblocks at all, so that they can be

decoded directly.

A macroblock may be skipped, meaning that no more information is stored.

Such macroblock is filled using motion estimation: its motion vector is averaged

from its neighbors and its residual signal is set to zero.

The pixel data is processed in YCbCr color space. An integer-valued (and

thus reversible) approximation of Discrete Cosine transform is applied to each

channel in 4× 4 pixel blocks. Each of the chroma channels has half resolution in

both dimensions, and its missing values are interpolated. This implies that the

residual signal of a macroblock has 16 luminance blocks and 4 + 4 chroma blocks

in total.

The deblocking filter is strictly defined and mandatory, because its result is

used by other motion-estimated frames. It is basically an adaptive smoothing

filter applied to an 8-pixel row across the boundary of two neighboring pixel

blocks, and then again in columns.

B Sparse scene reconstruction

The goal of sparse reconstruction is to obtain camera calibration from a set of

images displaying an unknown scene from different viewpoints. Of interest for

this thesis is the specialized case when the images form a video sequence acquired

by a single moving camera. As a side product of the classical approach, a sparse

set of points on estimated scene surface is generated during the computation.

B.1 Overview

Sparse reconstruction programs typically proceed in two stages. In the first step,

a sparse set of feature points is identified on the input video frames by considering

their visual appearance. Each of these points correspond to a patch of surface in

the scene, and there are at least two points (in different frames) corresponding

to the same surface patch. The second stage processes only the image-space

positions of these points; it assigns an estimated scene-space position to each of

them and external camera calibration for each frame.
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Two main approaches to identifying feature points are commonly used, which

are discussed in the following two sections.

B.2 Feature tracking

In the feature tracking method, a set of tens to hundreds of interest points is

identified in a single frame chosen by the user. Each point’s feature area is

typically a square 20–50 pixels in width with the interest point as its center. This

feature area should provide enough texture in order to be easily localized. They

can be manually chosen by the user if necessary.

The tracking then proceeds either to the previous or to the next frame in the

sequence. If the camera motion is reasonably slow, all the interest points will

stay roughly in their positions, and the texture around them stays very similar.

Thanks to this, we can locally search for the feature area in the new frame.

One of the most common local image search techniques is the Kanade-Lucas-

Tomasi tracker [25]. It uses a linear approximation of the image and iteratively

searches for the feature area across the individual levels of the detail pyramid.

If the expected motion is slow enough, it is even feasible to use a brute force

search. However, in order to get an accurate reconstruction, we want to identify

the feature point position with subpixel precision. Therefore, the brute force

search is usually followed by a nonlinear optimization technique (such as Gauss-

Newton) on subpixel scale.

Nonlinear optimization can be also used to solve for rotational change of the

feature area, as well as other types of projective mappings. It can solve for

slow exposure changes between the frames. Considering these usually improves

robustness of the algorithm.

The tracking then continues to another neighbor frame in the sequence. A

decision must be made which frame (of the already tracked ones) to take the

representative feature area from.

This approach is, for example, used in programs Adobe After Effects [4],

Blender [3] and Voodoo Tracker [12].

B.3 Feature matching

A perhaps more sophisticated approach is commonly used to allow for a full

automation of the task. A set of feature points is selected in each frame of the

sequence, and their amount ranges to thousands per frame. The main concern

during the feature point selection is repeatability, so that the same scene point

is selected many times throughout the sequence. Many algorithms have been

proposed for this task; most of them are based on finding maxima in partial

derivatives of different scales of the image (i.e., its gradient or Laplacian).
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The feature area of each of the points detected is then described by a feature

vector. This description should be invariant to the expected image distortions, so

that the feature vector is the same when its source image is, e.g., rotated. Many

feature descriptors are also nearly invariant under global illumination changes.

The feature vectors have typically tens to hundreds of dimensions.

All these feature vectors are fed to a nearest-neighbor search structure. We

expect that feature vectors corresponding to the same features in the scene across

different frames will be noticeably close to each other, and ask the search structure

for a set of such putative matches.

Some of these will be of course matched incorrectly. Thanks to the fact that

correctly matched points between two frames are related by a projective mapping,

an outlier filtering scheme such as RANSAC can be used to separate the correct

matches [22, p. 117–121].

This approach is used for example in Cinema4D [5] and Syntheyes [6].

B.4 Camera calibration

The known position f̂ i,k of feature point k in the i-th frame is related to its

unknown scene-space position pk by camera projection:

f i,k = π(Cipk), (6.1)

where Ci is an unknown camera matrix corresponding to the i-th frame. The

vector f i,k is an exact value of the projected position, since the measured vectors

f̂ i,k typically contain a substantial amount of noise. We can state such equation

for each i and k if feature point pk was successfully identified in frame k. This

all in all makes a huge nonlinear system, in a typical case vastly overdetermined.

We can see it as a minimization problem and solve it as such, but to ensure

convergence, we need an initial approximate solution.

Estimate of the internal camera calibration can be either extracted from the

sequence metadata, or is supplied by the user. Without loss of generality, we can

set external calibration for one camera to an arbitrary value, which effectively

equals to translating and rotating the resulting scene.

To make a bootstrapping step, we need two frames depicting at least 8 com-

mon feature points. It allows us to solve for the so called fundamental matrix

that relates points between these two frames. One of the cameras can then be

moved to a default position, and relative position of the other is determined by

the fundamental matrix.

Knowing a point’s screen-space position in at least two frames, we can perform

triangulation similarly as described in Section 2.3 to get its position in scene

space. Knowing the scene-space position of at least 6 points depicted on a single
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frame,2 we can solve for the corresponding camera matrix [22, p. 181]. The initial

approximate solution is obtained by a greedy repetition of these two tasks, until

all scene points and cameras are assigned a value.

Then, we define the energy to be minimized as the total reprojection error

E({Ci}, {pk}) =
∑
i,k

w(i, k)‖f̂ i,k − π(Cipk)‖,

where the weighting function w(i, k) is zero if the corresponding screen-space

position f̂ i,k is not known. Depending on parametrization of the cameras, their

internal calibration can be minimized per-frame or for a single optimum through-

out the whole sequence. Note that such non-linear refinement can be performed

earlier on an unfinished approximate solution, if the precision does not seem

sufficient.

C Directory structure of the attached data

• The directory bin/ contains a binary of the program built for Linux x86-64.

Most libraries are however dynamically linked, so that the CGAL and PCL

shared objects must be installed and available at runtime.

• doc/install.html and doc/usage.html is the user documentation of the

program. The file doc/code.html contains developer documentation and

overall notes about the structure of the code.

• extern/ contains the less common external libraries that are needed to

compile and run the program. Furthermore, this directory contains the

current source code of the program Blender 2.68.

• src/ contains the whole source code of the program. Apart from it, a

Python script src/io export tracks.py is provided that serves for export-

ing the camera calibration conveniently from Blender as input to our pro-

gram. Further files for testing of the source code are provided in src/test/.

• The directory test/ contains data for testing of the program. Each testing

set consists of a video sequence, a configuration file for our program, the

Blender file used for tracking and optionally a suitable initial mesh estimate.

The names of files within a set differ only by their extension.

• Finally, the file thesis.pdf is the electronic version of this document.

2Fewer points may be sufficient if we impose a priori constraints. For example, we can
assume that the internal calibration does not change.
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